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Theory of Gamss  and Applications
in Forestry

Benee F. Swindel, Project Leader
Intensive Management Practices

Assessment Center
Gainesville, Florida

I. Introduction and Theoretical Aspects

1.0. Game Theory in Forestry
The theory of games of strategy de-

rives from von Neumann and Morgenstern
(1944). Their book was greeted with
considerable enthusiasm by military
strategists, economists, and others.
The elegance of their development of the
theory is much admired. Still, substan-
tive applications within forestry and
other natural resources fields have been
rare. The root cause of this paucity of
applications is not clear. Surely the
theory is little known to forest man-
agers and decisionmakers. All this
suggests that an exposition of game
theory for natural resources managers
could encourage application of the tech-
niques in solving real problems. Hence
this paper. Aside from that, the theory
has an intrinsic beauty and study of
such abstractions, as of mathematics
generally, inculcates lofty habits of
mind.

There are very obvious limitations to
the applicability of game theory. Thus,
two-person, constant-sum games assume
two knowledgeable and selfish adver-
saries with opposed interests. Clearly,
the adversaries can be two people, but
need not be. They can as well be two
agencies, two companies, two coalitions,
two armies. All that is required is
that individuals in each group share, so
far as the game being played is con-
cerned, a common interest.

The interests must be strictly opposed.
One player's gain is the other's loss.
Each is assumed knowledgeable of all
options and their consequences, Each is
expected to try to maximize his own
gain, implying he seeks to maximize his
opponent's loss. Such situations must
be rare within a single organization

with a united purpose. Thus, within a
company or agency managing land for
profit or public good, it appears that
opportunities for strict applicability
of this theory as a guide to rational
behavior are indeed rare. Even between
companies within an industry or between
departments within an agency, compelling
examples of complete antagonism do not
readily come to mind in profuse
abundance.

Still, there are instances of conflic-
ting situations that can be described
fundamentally as a game of strategy be-
tween two or more adversaries. The
insight provided by the game theoretic
formulation and solution can be a help-
ful guide to choosing, predicting, or
understanding rational behavior in such
circumstances. A few examples that may
be suggestive of many are given in $11.
Those are necessarily much simplified in
order to treat them in the space allot-
ted and so that the techniques of prob-
lem solving may not be lost in the
complexities of more realistic
situations.

In order that the theory may not seem
trival, we now attempt to show that the
logic of game theoretic abstractions has
profound implications for large problems
(as well as delightful implications for
small ones). To do so we extract freely
from Garrett Hardin  (1968). Hardin's
thesis was that the world population
problem has no technical solution but
requires rather a fundamental extension
of morality. Some of his analyses are
used out of that context--since they
apply equally to the one we consider.

With regard to some of its attributes,
the forests of a nation are often con-
ceived as a commons. Their beauty and
protective influence over water and
wildlife resources are thought of as a
natural resource. Concerned citizens
frequently express an interest in the
conservation of these resources and
sometimes object to management measures
implemented to achieve  the immediate
objectives of the landowner.

In Hardin's  words:
"The tragedy of the commons develops

in this way. Picture a pasture open to
all. It is to be expected that each
herdsman will try to keep as many cattle



as possible on the commons. Such an
arrangement may work reasonably satisfac-
torily for centuries because tribal
wars, poaching, and disease keep the
numbers of both man and beast well below
the carrying capacity of the land.
Finally, however, comes the day of
reckoning, that is, the day when the
long-desired goal of social stability
becomes a reality. At this point, the
inherent logic of the commons remorse-
lessly generates tragedy.

"AS a rational being, each herdsman
seeks to maximize his gain. Explicitly
or implicitly, more or less consciously,
he asks, 'What is the utility to me of
adding one more animal to my herd?'
This utility has one negative and one
positive component.

(1) The positive component is a
function of the increment of one animal.
Since the herdsman receives all the
proceeds from the sale of the additional
animal, the positive utility is nearly +l.

(2) The negative component is a
function of the additional overgrazing
created by one more animal. Since, how-
ever, the effects of overgrazing are
shared by all the herdsmen, the negative
utility of any particular decision-making
herdsman is on:Ly a fraction of -1.

"Adding together the component partial
utilities, the rational herdsman
concludes that the only sensible course
for him to pursue is to add another
animal to his herd. And another; and
another.... Rut -this is the conclusion
reached by each and every rational
herdsman sharing a commons. Therein is
the tragedy. Each man is locked into a
system that compels him to increase his
herd without limit --in a world that is
limited. Ruin is the destination toward
which all men rush, each pursuing his
own best interest in a society that
believes in the freedom of the commons.
Freedom in a commons brings ruin to
all."

Do these concepts of a constant-sum
game, and the tragic implications of
dominated strategies so graphically
described, have any analogous implica-
tions in the complex problems of formu-
lation of forest resources management
policy? Hardin  himself gives both a
specific and general illustration that
establishes the affirmative.

"The National Parks present another
instance of the working out of the trag-
edy of the commons. At present, they
are open to all, without limit. The
parks themselves are limited in extent--
there is only one Yosemite Valley--
whereas population seems to grow without
limit. The values that visitors seek in
the parks are steadily eroded. Plainly,
we must soon cease to treat the parks as
commons or they will be of no value to
anyone.
"What shall we do? We have several

options. We might sell them off as pri-
vate property. We might keep them as
public property, but allocate the right
to enter them. The allocation might be
on the basis of wealth, by the use of an
auction system. It might be on the
basis of merit, as defined by some
agreed-upon standards. It might be by
lottery. Or it might he on a first-come,
first-served basis, administered to long
queues. These, I think, are all the
reasonable possibilities. They are all
objectionable. Rut we must choose--or
acquiesce in the destruction of the com-
mons that we call our National Parks...
In a reverse way, the tragedy of the
commons reappears in problems of pollu-
tion. Here it is not a question of
taking something out of the commons, but
of putting something in--sewage, or chem-
ical, radioactive, and heat wastes into
water; noxious and dangerous fumes into
the air; and distracting and unpleasant
advertising signs into the line of
sight. The calculations of utility are
much the same as before. The rational
man finds that his share of the cost of
the wastes he discharges into the com-
mons is less than the cost of purifying
his wastes before releasing them. Since
this is true for everyone, we are locked
into a system of 'fouling our own nest,'
so long as we behave only as independ-
ent, rational, free-enterprisers."

Hardin  concludes that the solution to
producing temperance in the use of a
commons resides in mutual coercion
mutually agreed upon. Importantly, he
remarks:

"It is worth noting that the mortality
of an act cannot be determined from a
photograph. One does not know whether a
man killing an elephant or setting fire
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to the grassland is harming others until
one knows the total system in which his
act appears. 'One picture is worth a
thousand words,' said an ancient Chinese;
but it may take 10,000 words to validate
it. It is as tempting to ecologists as
it is to reformers in general to try to
persuade others by way of the photograph-
ic shortcut. Rut the essence of an
argument cannot be photographed: it
must be presented rationally--in words."

The compelling logic of the foregoing
analysis leads to the conclusion that
policies to protect forest resources
will best rely on mutual coercion
mutually conceived from reliable evi-
dence concerning the functioning of the
total forest ecosystem. Again quoting
Hardin,

"reaching an acceptable and stable
solution will surely require more than
one generation of hard analytical work--
and much persuasion."
Persuasion and agreement depend on under-
standing the analytical work--including
the tools of the analysis. Occasionally
the appropriate analytical tool is the
theory of games of strategy.

1.1. Zero-Sum, Two-Person Games

The following abstraction taken as a
definition of a game of strategy will he
sufficiently general for most purposes.
One of two players is required to choose
one among the finite set of strategies

A = { al, a2r . . . . air ..*, am I.

The second player is required to choose
one strategy from the finite set

B = { blr b2r . . . . bj t . . . . bn I.

Each  player is aware of all of his own
and all of his opponent's alternatives,
but must choose his own strategy without
benefit of knowing his opponent's
choice. Subsequent to a choice of strat-
egy, say air by Player I, and a choice
of strategy, say bj, by Player II,
Player II is required to pay Player I an
amount Rij (possibly negative). Such
games are called two-person games for
obvious reasons and zero-sum games since
the sum of the winnings of the two

players is zero; there is no "house."
Clearly, zero-sum, two-person games are
characterized by their payoff matrix
which is known to both players.

Player II Strategies

a1 RI1 21-J . . . R☺j l .* Rln

a2 R21 R2.J . . . R2j  l *a R2n

. . .

I

. . . . . . .*. l  .  . . . . . . .

ai Ril Ri2  -0. Xij  l . . Rin

. . . . . . . . . . . . . . . . . . . . .

It is obvious that Player II would
like to choose a strategy so that the
payoff (which is his loss) is as small
as possible. But, the payoff depends on
the strategy chosen by Player I. So, the
question arises as to whether Player II
has an optimum strategy. And conversely
for Player I, who wishes to make the
payoff (which is his gain) as large as
possible.

1.2. Strictly Determined Games
In the payoff matrix for certain games

there is a payoff, Rij  say, simultaneous-
ly not larger than any payoff in the
same row, and not smaller than any pay-
off in the same column. Such payoffs
are said to be a saddlepoint, the game
is said to be strictly determined, and
R*1-j is called the value of the game.

Consider the implications to the two
players should the payoff matrix in $1.1
contain a saddlepoint at Rij. If Player
I then chooses the strategy ai, he guar-

antees  himself a payoff (gain) of at
least Rij --no matter what strategy
Player II chooses. Conversely, if
Player II chooses the strategy b-j, he
guarantees himself a payoff (loss) of no
more than Rij. In this situation, it is
clear that neither player may, by any
alternate choice of strategy, hope to
obtain more favorable results. Player I
cannot do better than choose ai, which
is called a maximim pure strategy and is
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optimum for him. Player II cannot do
better than choose bj, which is called a
minimax  pure strategy and is optimum for
him. The payoff is then Rij = v, say
the value of the game.

1.3. Inadmissible Strategies
In some payoff matrices, a systematic

search for optimum strategies is facili-
tated by deleting certain rows and/or
columns. In the payoff matrix of $1.1,
suppose the first two columns possess
the property:

&il ) Rip all i = 1, 2, . . . . m, and

a i l > Ri21 some i = 1, 2, . . . . m,

I.e., in each row the payoff in column 1
is always as large as the payoff in
column 2--and sometimes larger. In that
case, choosing b2 is always as good as
choosing bl for Player II, and sometimes
(for countering some choices of his
opponent) it is better. Player II can
have no reason ever to prefer strategy
% to b2, and bl is said to be domi-
nated by b2. Any strategy of either
player so dominated by an alternative
strategy is said to be inadmissible
and may be deleted from further
consideration.

1.4. Computations for Strictly Deter-
mined Games

The payoff matrix of $1.1 may be
systematically examined to determine
whether it has a saddlepoint or not by
appending a column (composed of the row
minima) and a row (composed of the
column maxima) as follows.

Player II Strategies

5 b2 . . . bn

RI1
R
12 l **

II In

R
21

R
22 l **

⌧ 2n

. . . . . . . . . . . .

R ml Rm2 l ‘* +Nl

max II
i il max R max R

i i2"' i in

m$n "lj

min II
j 2

. . .

min g .
j ml

If the maximum of the elements in the
appended column (i.e., the maximum of
the row minima) is equal to the minimum
of the appended ro-w (i.e., the minimum
of the column maxima), then the game is
strictly determined (i.e., the payoff
matrix has a saddlepoint). Moreover,
any strategy of Player I that maximizes
the row minima is a maximin  strategy and
an optimum strategy for him. Con-
versely, any strategy of Player II that
minimizes the column maxima is a minimax
strategy and an optimum strategy for
him. Finally, the value of the game is

v=max min R.. = min max 2.. .
i j 'J j i '7

It may be noted that a payoff matrix
may have more than one saddlepoint. The
payoff is always v at each of them. And,
when either player has more than one
optimum strategy, he will be indifferent
between them since each guarantees a
payoff of v.

I.!?.  Mixed Strategies
We have completed our theoretical

description of strictly determined games
of strategy. Henceforth we are par-
ticularly interested in games with
payoff matrices where

max min R ij < min max R
i j j i ij
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(the opposite inequality is arith-
metically impossible). From $1.4 it is
obvious that Player II always has a pure
strategy that ensures his loss will be
no greater than the right-hand side of
the last inequality. Analogously,
Player I has a pure strategy that
ensures his gain will be no less than
the left-hand side. In 51.4 these two
quantities were equal, and discovery of
such strategies constituted a solution
of the game.

Now the disparity between the two
sides of the last inequality may be
viewed opportunistically by both
playersi-for  it suggests the possibility
of increased gain (reduced loss) over
that guaranteed by the maximim (minimax)
pure strategy. The fundamental theorem
of games addresses this possibility and
provides a definitive solution for each
player. It employs the concepts of
mixed strategies for the players and
expected payoff in the repetitive play
of the same game.

Consider then that Player I can elect
to choose among his pure strategies,
al, with the aid of a random device.
Thus, with such a device, he might
choose strategy al with probability
PI i a2 with probability ~2, . . . .
and strategy a, with probability pm
where:

0 6 pi, i = 1, 2, '**, m; and 1 =

Analogously, Player II could choose
among his pure strategies, bl,  b2,  l **,
13 n, with probabilities

I.e., he could choose a mixed strategy
by electing one among all Ixn vectors
whose elements are nonnegative and sum
to one.

1.6. Expected Payoff
Given a particular choice of a mixed

strategy, 2, by Player I, and a par-
ticular choice of a mixed strategy, q,
by Player II, it is a simple computaZon
to find the expected payoff in a long
series of repetitions of a zero-sum,
two-person game. Por the expected
payoff is the sum over all prospective
payoffs of the product of the payoff and
its probability of occurrence. Clearly
the probability of any payoff in the
payoff matrix, say Jtij,  is

Pr (R..)  = Pi13 'j

since Rij is realized if and only if
Player I chooses his strategy ai (which
he does with probability pi), and Player
II chooses his strategy bj (which he
does with probability qj), and since
($1.1) choice by each player is made in
the absence of knowledge, and therefore
independently, of his opponent's choice.
Thus, given _e and 2, the expected payoff
is

(For example, if in each play of a cer-
tain game , .Player  I has only two pure

f i AijPr  (Aij)  = C ;i: Xij piqj= 2 L 2'
13

strategies, al and a2, and he chooses
al if the flipping of a (fair) coin where qcnxl is the matrix transpose of
shows heads, and he chooses a2 if the Slxnr ‘is = Lmxn is the payoff matrix, and
coin shows tails, then m = 2 and p1 = E L St is simply the matrix product

P2 = l/2*) Choice of a particular set of
probabilities pLq*=  [PIP2 l ** D, 1

2 = [ PI P2 "' pm I

constitues  choice of a mixed strategy by
Player I. The set of all mixed strate-
gies available to Player I is the set of
all lxm vectors, such as p above, where
the elements of p are nonnegative and
sum to one.

R

:

21 R22 '-* R 2n

. . . ..‘ . . . . . .

R R . . . R
ml m2 mu

92

. . .

qn
- d

which is a scalar, i.e., one number.
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1.7. The Fundamental Theorem
The fundamental theorem of games of

strategy given by John von Neumann
established that for every payoff matrix
L

max min E L s'
E 3

and

min max 2 L 4.
i-ii 2

both exist and they are equal. Their
common value, say V, is called the value
of the game. Stated another way, the
theorem establishes that in any zero-
sum, two-person game Player I has a
strategy,  g*, among his strategies g,
and Player II has a strategy, CJ*, among
his strategies CJ,  such that

2 L q** < v = p* L q** GE* Lq'.- -

Thus, from the left inequality, Player
II has a strategy, CJ*,  that guarantees
that his expected loss will not exceed V
no matter what strategy Player I
chooses. And, from the right inequality,
Player I has a strategy, P*, that
guarantees that his expected gain will
be at least V no matter what strategy
Player II chooses. Since neither
player, by alternative choice of strat-
egy, can improve his prospects, each may
as well choose p* and q*, respectively,
so as to achieve V in The long run: p*
is a maximin  mixed strategy and optimum
for Player I; 2* is a minimax  mixed
strategy and optimum for Player II.

It should be observed that the choice
of a pure strategy, ai, by Player I,
i.e., the certain choice of ai can he
described as the choice of the mixed
strategy with pi = 1 and pk = 0, where
k f i. And, similarly, the choice of
the pure strategy, bj, by Player II can
be described as the choice of the mixed
strategy where all elements are zero
except for one in the jth position.
When the payoff matrix has a saddle-

point, the maximin  pure strategy satis-
fies the defining property of r)*, the
optimum mixed strategy for Player I, and
the minimax  pure strategy satisfies the

defining property of CJ*, the optimum
mixed strategy for Player II.

1.8. Mention of Other Games
Extensions in several directions of

the theory of the preceding sections
have been attempted. Some of them will
now be briefly reviewed.

Games involving three persons, four
persons, and in general many persons
have been formally considered. Here
we will confine ourselves to quoting a
single paragraph from Dorfman and others
(1958):
"The theory of many-person games in

the hands of von Neumann and Morgenstern
is essentially a theory of coalitions,
their formation and revision. The
underlying idea is that two persons in
such a situation cannot do worse by
acting jointly than by acting severally,
and may do better. Thus a many-person
game tends to be reduced to a
two-'person' game in which each 'person'
is a coalition. The problems then
become: which coalitions will form and
how will the winnings be divided among
the members of the coalition? To pursue
the answers proposed for these questions
would lead us into a specialized
discussion, and since these answers are
not very satisfactory we refrain."

Extending the results of zero-sum
games to constant-sum games is easy.
Indeed, in some elementary expositions
the basic theory is presented on the
basis of the assumption that the sum of
the winnings of the two players is
always a constant, say R. We have taken
R to be zero for convenience.

Further extension to non-constant-sum
games is much more difficult. When one
player's gain is not necessarily the
other's loss, there is the possibility
of increased gain by both players
through collusion and cooperation.
Unfortunately, as McKinsey  (1952)
observes:

"Despite the great importance of
general games for the social sciences,
there is not available so far any treat-
ment of such games which can be regarded
as even reasonably satisfactory."



1.9. Decision Theory
One application of the theory of

zero-sum, two-person games envisions a
game of strategy btween a decisionmaker
and "nature." Some modification of the
preceding arguments is required, and
there is considerble  controversy.
Moreover, even a cursory review of the
subject would require a treatment com-
parable in size to tJJat  given here to
games of conflict between selfish oppo-
nents. Still, this important subject
must be mentioned.
So, we now consider briefly that the

abstraction of 51.1  is sometimes used
to describe tJle situation of a decision-
maker (Player II) "in the real world"
confronted with choosing among decisions
or actions, bl,  132, l **, Jon. In the
natural resources field, the sets of
actions confronting various decision-
makers are as diverse as one can
imagine. They may deal with business,
forest management, ,Wrsonnel,  silvi-
culture, engineering, and selection, its
maintenance or deployment of equipment.
The list goes on. Typically, choice of
a particular decision commits one for
the future. Even if it doesn't, the
optimum choice of action is typically
not evident due to uncertainties about
markets, economic conditions, natural
events such as weather to be encoun-
tered, action or state of biological
agents, etc. In any event, it is
possible to envision the applicability
of the materials of $1.1  to some of
these situations by taking Player I to
be, for lack of a better descriptor,
"nature" and the strategies of "nature"
to be the various events or conditions
that the decisionmaker may confront.
The payoff, Rij, becomes tJle cost
(possibly negative, indicating a net
benefit) of taking action, bj, should
condition ai materalize. Clearly,
Player II wishes to choose an action,
bj t to minimize his costs (maximize his
benefits). But, in the formulation of
0.1 I as in real life, uncertainty
about tJle condition, ai, that may pre-
vail creates uncertainty about tJle
desirable action.

Now, a disparity. Previously, Player
I was considered to be an intelligent,
deliberative opponent, informed of the
payofE  lmatrix, and expected to choose a
strategy, ai, to maximize Player II's
loss. "Nature , 'I whether denoting next
month's weather, the biological agents
at work in a forest, or general economic
conditions expected for tJ1e next
quarter, can hardly be construed as so
perverse. Still, on occasion, the mini-
max solution given by game theory is
recommended for decisionmakers who
simply wish to guard against the -worst
contingency.

More often, an alternative base on
prognosis is recommended. For example,
if weather is the adversary, and poten-
tial conditions are enumerated, then
something of tJie probability of their
occurrence must be known--perhaps from
climatic records. If the period of time
of concern to the decisionmaker is near
and short, perhaps the historical fre-
quency of conditions may be modified by
a weather forecast. Analogously, enough
of the health of a forest may be known
to specify the likelihood of various
biological conditions, and there are
forecasts of future economic conditions.
What is usually recommended to the deci-
sionmaker equipped with information on
the likelihood of various conditions is
that he determine his expected loss
under each of his alternatives and
choose that one minimizing his expected
loss given his information. That is, a
Bayesian strategy, is usually recom-
mended in such formulations as better
justified than a minimax  one.
For tile reader interested in decision

theory, several references in SIV are
selected from a voluminous literature.

II. Procedural Aspects and Illustrative
Applications

11.1. Locations for Two Companies in a
Forest

Suppose a single railroad traverses a
homogeneously forested region. Within



the forest, distances along the railway
from one boundary to the other are
scaled from zero to 100. Suppose two
forest ,7roducts  companies intend to
enter this market by constructing a
single rail siding each where wood may
be scaled, purchased, and loaded for
transport to their respective mills.
They must locate at two points, such as
I and II, in the following figure.

4-i-L
0 H II 1 0 0

If we construct a point, H, halfway
between I and II and assume each company
will get all of the wood marketed from
its side of ,point  H, There  should the
two companies locate their siding?
This problem fits ve'ry neatly into

the format of a zero-sum, two-person
game I(sI.1) if it's assumed for
simplicity t?ldt  the companies can locate

only at a finite number of points along
the railway, say at 0, 20, 40, 50, 60,
80, and 100. Suppose further that the
companies will split the market 50-50 if
they choose the same location. The pay-
off matrix is shown in the table below.
The losses shown in the table are the
proportions of the market yielded by
Company II to Company I, depending on
the two locations chosen. Clearly,
Company II wishes to choose a location
(strategy) to minimize such a payoff.
Company I wishes to maximize it.
To ascertain jrhether  this payoff

matrix has a saddlepoint ($I.l), the
minimum loss in each row is appended on
the right of the payoff matrix ($1.4).
Analogously, the maximum loss in each
column is appended to Yne bottom.
Finally, it is observed that the maximum
of the row minima is .50, as is the
minimum of the column maxima, i.e., the
two are equal and this payofE  matrix has
a saddlepoint. Moreover, the optimum
location (maximum strategy) for Company
I is in the center of the forest (at
location 50). The optimum location
(minimax  strategy) for Company II is
also in the center (at location 50).

2 6 0

1 0 0

Location of Company II

0 20 40 50 6 0 8 0 1 0 0

.50 .I0 .20 .25 .30 .40 .50 .I0

.90 .50 .30 .35 .40 .50 .60 .30

.80 .70 .50 .45 .50 .60 .70 .45

.75 .65 .55 .50 l 55 .65 .75 .50 ( - m a x i m u m

.70 .60 .50 .45 .50 .70 .80 .45

.60 .50 .40 .35 .30 .50 .90 030

.50 .40 .30 .25 .20 .I0 .50 .I0

Row
minima

Column maxima .90 .70 .55 .50 .55 .70 .90

T
minimum
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When both companies locate in the
center, they share the market 50-50 (.50
is the value of the game). The payoff
corresponding to the two optimum strate-
gies exhibits the characteristic prop-
erty of a saddlepoint--it is smallest in
the row and largest in the column con-
taining it ($1.2).

Notice that locating one company at
any point other than the center yields
more than half of the market to the com-
petitor who locates in the center.

11.2. When to Patrol
Consider next a problem that con-

fronts, in more or less complex form,
many forest managers whose jobs include
an element of law enforcement, i.e.,
whether to patrol an area susceptible to
unlawful entry. Problems of this type
arise in many forms due to the suscep-
tibility of forest land to timber
trespass, poaching, arson, etc.

Suppose a company forester is
alerted that his lands are the intended
target of an arsonist. During any par-
ticular susceptible period (e.g.,
overnight) the arsonist may either
attempt to set fire or he may not (i.e.,
he may stay home). The forester's
alternative strategies may be to patrol
or refrain. Suppose the payoff matrix
is

Action of
Arsonist

Burn -100 10 -100

Don't burn

Column
maxima

1 0 0

1 10

The numerical values of these payoffs
are debatable --as is the assumption of
zero-sum payoffs. But, the rationale
could be something like this. If
neither protagonist acts, the (mutual)
result is the status quo--indicted by
zero payoff. If the patrol is employed
in the absence of the arsonist, the com-
pany incurs a cost of 1 man-day of

unnecessary labor. Alternatively, if
the arsonist strikes in the absence of a
patrol, the company incurs 10 man-days'
labor in suppressing the fire. Both of
these labor costs are assumed to accrue
in satisfaction to the arsonist as
payment for a real or imagined injustice
by the company. Finally, if both pro-
tagonists act, the arsonist is caught
and fined and/or imprisoned at con-
siderable personal loss. The company
correspondingly gains from the relief
from future patrols and suppression from
the arsonist apprehended and perhaps
from others who might entertain like
ambitions for revenge or mischief in the
absence of an example of the potential
consequences.

This simple game does not possess a
saddlepoint since

max min R.. =O<l=min  max R..,
i j 13 j i 17

l.e., the maximum of the row minima is
less than the minimum of the column
maxima. Hence, the optimum strategy for
at least one of the players involves a
mixture of his pure strategies, and the
value of this game has not been deter-
mined.

A general algebraic solution for 2x2
games with payoff matrices

without saddlepoints is available. In
such games, Player I's optimum mixed
strategy is to choose his first pure
strategy with probability p and his
second with probability l-p where

R
22 - R21

P = .

R
11 - 52 - R21 + %22



Analogously, Player II'S optimum mixed
strategy is to choose his first and
second pure strategies with probabili-
ties q and l-q, respectively, where

2
22 - %I2

9= - .

R
11 - %2 - R21 + R22

Finally, the value of the game is

v= - .
R 11 - %2 - l21 + R22

JJsing  the numerical payoffs given at
the beginning of tl?is  section and the
relevant formulas, it is easy to find
that

(i) the optimum strategy for the
arsonist is to burn the woods
with probability p M l/Ill M
.009 -and to stay home with
probability l-p = 110/111 C
.991,

(ii) the optimum strategy for the
forester is to patrol with
probability q = lO/lll M .09
and to refrain with probabil-
ity l-q = 101/111~  .91, and

11.3. A Graphical Method for Finding an
Optimal Strategy for Any Player
With Two Strategies

Without attempting to motivate the
specific game, we next illustrate a
graphical technique for finding
(approximately) an optimum mixed strat-
egy for any player who has only two
pure strategies from which to choose.
His opponent may have any (finite)
number of pure strategies. Careful
study of this material will facilitate
understanding of $111. The example here
is from Singleton and !Pyndall  (1974).

Consider the game with payoff matrix

Player II Strategies

I bl b2 b3 b4
I
Row
minima

al
1 2 4 0 0

a2 0 -2 -3 4 -3

Column 1 2 4 4
maxima

(iii) the value of the game is
v = 10/111.

1 0



Since the payoff matrix has no saddle-
point, the problem for Player I is to
find a mixture of his two pure strat-
egies, al and a2, that maximizes his
minimum expected gain (against any pure
or mixed strategy of Player II). Thus,
Player I seeks a probability, p, with
which he will choose his strategy
al (and consequently a probability, l-p,
with which he will choose his strategy
a2) to maximize his minimum expected
gain.

Consider that, given p, Player I's
expected gain against bl (cf. column one
of the payoff matrix) is

5, (p) = Ip + 0 (I - p).

This function is plotted and labeled in
the following graph. It shows, for
exainple, that if Player I chooses p = 0,
so that he chooses with certainty his
strategy a2r then he gains against
bl exactly zero (cf. payoff matrix). If
Player I chooses p = 1 so that he
chooses with certainty his strategy al,
then he gains against bl one. If Player
I chooses an intermediate p so that he
chooses a mixture of al and a2, then his
expected gain against bl is given by the
graph of 5, (p). Thus, if Player I
flips a fair coin to choose between
al and a2, his expected gain against
bl is one-half.

Similarly, given p, Player I's ex-
pected gain against b2, b3, and b4 (cf.
columns 2, 3, and 4 of the payoff
matrix) are, respectively,

5, (p) = 2p - 2 (1 - P),

5, (p) = 4p - 3 (1 - P), and

5, (PI = op + 4 (I - PI.

All of these functions are depicted in
the following graph.
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Points on these straight lines depict
the expected gain of Player I against
each of the pure strategies of Player II
for any p in the interval zero to one,
inclusive, i.e., for any mixed strategy
for Player I.

Rut, the graph instantly shows more
than that. For every p, it shows Player
I's minimum expected gain, whatever
Player II's strategy. Player I's mini-
mum expected gain is

F;  (PI =min F
i

'i (P),

the bold, segmented linear function in
the graph. Clearly, Player I maximizes
his minimum expected gain by choosing p
to maximize 5 (p), i.e., by choosing the
point, p0, ticked on the graph's axis at
p = 0.8. Thus, Player I's optimum strat
egy is to choose

a, with probability 0.8, and

a2 with probability 0.2.

Any alternative choice of p clearly
lowers Player I's minimum expected gain
(cf. graph).

then his expected gain against each of
Player II's strategies may be written
down. These expectations are:

(against b,)

5, (2) = P, RI, + P2 x2, + .** + Pm Rm, i

(against b2)

5, (p) = P, R,2 + P2 x22 + l ** + Pm Rm2 ;

. . .

and

(against bn)

5, (2) = PI Rln + P2 R2n + l ** + pm %l=

Now, for the moment, simply define a
quantity V as the minimum of these
expectations, i.e., define

V = rnin  { 5, (p), 5, (p), ***I 5, (p) 1 0

Then (cf. $11.3) Player I's problem is
to choose p to maximize V.

In analogy with problems of linear
programing, think of Player I as having

(i) choice variables p,, p2,  l **, pm,
and V, and

III. Programing for Computer Execution
(ii) the objective of maximizing V.

Remembering the constraints on the pi
and the definition (immediately above)
of V, Player I's problem is to choose
Plr P2r .'.I Pm to:

Following the strategy implicit in
$11.3, we can outline a linear
programing method for the solution of
general mxn games.

Consider the game with payoffs
maximize V such that

R ij ; i = 1, 2, l **, m; j = 1, 2, l .', n

where m and n are (in principle) any
finite &positive  integers. Consider
first the problem of finding an optimum
strategy for Player I, i.e., an optimum
vector, p, of probabilities for choosing
among hi.? m pure strategies al, a2, '**,
3m* Should Player I choose the par-
ticular mixed strategy (cf. $1.5)

p = [p,,, P2r l **I pm1 I

PI
11 ,, + P2 R2, + l ** + Pm Rml L V

PI
R 12 + P2 R22 + l ** + Pm Rm2 2 V

. . .

Pl
R In + P2 R2n + l ** + Pm mn 2 VR

PI + p2 + *** + w ='m 1

PI
> 0

1 2



> 0-

3, -> 0

Now, adding a constant to all elements
of the payoff -matrix  changes nothing as
far as strategies for playing a game are
concerned. In particular, the constant
to 'be added may be chosen to be -max mi,n
R ij l

This clearly assures that the'
value of the game is nonnegative. Con-
sequently, we may assume that V > 0.
Then Player I's problem of finding an
optimum strategy is the Eollowing  linear
programing program in more conventional
notation:

Choose p,, pa,  l **, pm,  V to maximize
V subject to

PI

v> 0-

> 0-

> 0-

P > 0m -

PI + p2 + l ** + pm 2'

R
11 PI

+R
21 p2 + ." + R -v> 0

ml 'rn -

R
12 Pl

+R
22 P2 +

***+I3  pin2 m - v >  0

R In '1
+R 2n '2 +***+!4 p -v>omn m

Player II's problem of finding an
optimum strategy is the famous duality
problem of linear programing.
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